Trigonometry
Values Table

Complete reference for sine, cosine, and tangent values from 0° to 360°, with radians and a calculator.

Trigonometry Calculator

DegreesRadianssin θcos θtan θ
0°0010
30°π/61/2√3/2√3/3
45°π/4√2/2√2/21
60°π/3√3/21/2√3
90°π/210undefined
120°2π/3√3/2-1/2-√3
135°3π/4√2/2-√2/2-1
150°5π/61/2-√3/2-√3/3
180°π0-10
210°7π/6-1/2-√3/2√3/3
225°5π/4-√2/2-√2/21
240°4π/3-√3/2-1/2√3
270°3π/2-10undefined
300°5π/3-√3/21/2-√3
315°7π/4-√2/2√2/2-1
330°11π/6-1/2√3/2-√3/3
360°010

Key Trigonometric Identities

Pythagorean

sin²θ + cos²θ = 1

Tangent

tan θ = sin θ / cos θ

Reciprocal

csc θ = 1/sin θ, sec θ = 1/cos θ, cot θ = 1/tan θ

Double Angle (sin)

sin 2θ = 2 sin θ cos θ

Double Angle (cos)

cos 2θ = cos²θ - sin²θ

Sum (sin)

sin(α + β) = sin α cos β + cos α sin β

Sum (cos)

cos(α + β) = cos α cos β - sin α sin β

Understanding the Unit Circle

The Unit Circle

A circle with radius 1 centered at the origin. For any angle θ, the coordinates of the point on the circle are (cos θ, sin θ).

Quadrant Signs

Q1 (0°-90°): All positive
Q2 (90°-180°): Only sin positive
Q3 (180°-270°): Only tan positive
Q4 (270°-360°): Only cos positive

Degrees to Radians

Multiply degrees by π/180.
180° = π radians
90° = π/2 radians
360° = 2π radians

Special Triangles

30-60-90 triangle: sides 1, √3, 2
45-45-90 triangle: sides 1, 1, √2
These give exact values for common angles.